MAIN TOPICS FOR EXAM 1

- (1) Fundamental definitions
 - (a) Group
 - (b) Subgroup
 - (c) Homomorphism (Iso/auto-morphism)
 - (d) Normal subgroup and conjugation
 - (e) Examples: S_n , D_n , C_n , matrix groups, etc
- (2) Fundamental lemmas
 - (a) Uniqueness of identity and inverse
 - (b) Cancellation
 - (c) Characterizations of normal subgroup
- (3) Fundamental theorems
 - (a) Lagrange's Theorem
 - (b) Isomorphism Theorem
 - (c) Correspondence Theorem
 - (d) 2nd Isomorphism Theorem
 - (e) Diamond Theorem
- (4) Group actions
 - (a) Definition
 - (b) Examples: conjugation, permutations, automorphisms, right multiplication
 - (c) Characterization: a map into $\operatorname{Sym} X$
 - (d) Stabilizers and kernels faithful actions
 - (e) Orbits transitive actions
 - (f) "Isomorphism Theorem" for actions: $\mathcal{O} \leftrightarrow \{Hg\}$
 - (g) Finite Counting Principle
 - (h) Stabilizers of interesting actions: Z(G), $C_G(x)$, $N_G(H)$, etc.
- (5) Applications of group actions
 - (a) Cayley's Theorem
 - (b) Product counting $|HK| = |H| \cdot |K|/|H \cap K|$
 - (c) Finding normal subgroups
 - (d) Counting conjugacy classes of elements/subgroups
 - (e) automorphisms and inner automorphisms
- (6) Some nice results
 - (a) *p*-groups have non-trivial center
 - (b) Cauchy's theorem
 - (a) and (b) come from using the Finite Counting Principle mod p
- (7) The symmetric group
 - (a) cycle notation and the disjoint cycle decomposition
 - (b) conjugacy in S_n "change of basis"
- (8) Homework results
 - (a) commutator subgroup and abelian quotients